Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3

نویسندگان

  • Jeyaraman Jeyakanthan
  • Katsumi Takada
  • Masahide Sawano
  • Kyoko Ogasahara
  • Hisashi Mizutani
  • Naoki Kunishima
  • Shigeyuki Yokoyama
  • Katsuhide Yutani
چکیده

The crystal structure of a putative dipeptidase (Phdpd) from Pyrococcus horikoshii OT3 was solved using X-ray data at 2.4 A resolution. The protein is folded into two distinct entities. The N-terminal domain consists of the general topology of the alpha/beta fold, and the C-terminal domain consists of five long mixed strands, four helices, and two 3(10) helices. The structure of Phdpd is quite similar to reported structures of prolidases from P. furiosus (Zn-Pfprol) and P. horikoshii (Zn-Phdpd), where Zn ions are observed in the active site resulting in an inactive form. However, Phdpd did not contain metals in the crystal structure and showed prolidase activity in the absence of additional Co ions, whereas the specific activities increased by 5 times in the presence of a sufficient concentration (1.2 mM) of Co ions. The substrate specificities (X-Pro) of Phdpd were broad compared with those of Zn-Phdpd in the presence of Co ions, whose relative activities are 10% or less for substrates other than Met-Pro, which is the most favorable substrate. The binding constants of Zn-Phdpd with three metals (Zn, Co, and Mn) were higher than those of Phdpd and that with Zn was higher by greater than 2 orders, which were determined by DSC experiments. From the structural comparison of both forms and the above experimental results, it could be elucidated why the protein with Zn(2+) ions is inactive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization and preliminary X-ray analysis of inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3.

Inorganic pyrophosphatase (PPase; EC 3.6.1.1) from the hyperthermophile Pyrococcus horikoshii was crystallized by the hanging-drop vapour-diffusion method at pH 5.0 using polyethyleneglycol 4000 as the precipitant. The crystal belongs to space group P2(1)2(1)2, with unit-cell parameters a = 71.7, b = 86.5, c = 92.5 A, alpha = beta = gamma = 90 degrees. There are two molecules in the asymmetric ...

متن کامل

Purification, crystallization and preliminary crystallographic analysis of the glycine-cleavage system component T-protein from Pyrococcus horikoshii OT3.

The glycine-cleavage system component T-protein is a folate-dependent enzyme that catalyzes the formation of ammonia and 5,10-CH2-tetrahydrofolate from the aminomethyl intermediate bound to the lipoate cofactor of H-protein. T-protein from Pyrococcus horikoshii OT3 has been cloned, overexpressed in Escherichia coli, purified and crystallized by the microbatch method using PEG 4000 as a precipit...

متن کامل

Designing better diffracting crystals of biotin carboxyl carrier protein from Pyrococcus horikoshii by a mutation based on the crystal-packing propensity of amino acids

An alternative rational approach to improve protein crystals by using single-site mutation of surface residues is proposed based on the results of a statistical analysis using a compiled data set of 918 independent crystal structures, thereby reflecting not only the entropic effect but also other effects upon protein crystallization. This analysis reveals a clear difference in the crystal-packi...

متن کامل

Structural changes in ribonuclease P RNA in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 induced on interaction with proteins.

The activated structure of RNase P RNA (PhopRNA) in Pyrococcus horikoshii OT3 was characterized by circular dichroism (CD) and ultraviolet (UV) absorbance spectra. The results suggested that interaction of four RNase P proteins (PhoPop5, PhoRpp21, PhoRpp29, and PhoRpp30) with PhopRNA results in destabilization of base stacking in PhopRNA, whereas the addition of a fifth protein, PhoRpp38, incre...

متن کامل

The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.

The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009